

If the density log is of the newer litho- or spectral type and a photoelectric curve (P_e) is available, the ambiguity is distinctly reduced. Many mixed lithologies can be resolved with this method: the P_e value falls between the single lithology value of each component. Problem for complex mixtures.

Lithology	ϕ_N and ϕ_D	P _e
Limestone	$\mathbf{\Phi}_N \sim \mathbf{\Phi}_D$	about 5
Dolomite	$\phi_D < \phi_N$ of 12-14 ϕ units	about 3
Sandstone	$\Phi_D > \Phi_N$ of 6-8 Φ units	less than 2
Anhydrite	$\Phi_D \ll \Phi_N$ of 14 or more Φ units	about 5
Salt	Φ_D is 40% or more; Φ_N slightly less than zero. But hole in salt succession ?? washed out.	4.7

Table is for limestone matrix; formation is water or oil filled.

Gamma ray and density/neutron/ $P_e \log overlays$ (1)

Density /neutron overlay indicates ϕ + lithology, P_e values better constrain lithology.

Matching of Neutron and Density log indicates:

- either limestone (if referenced to lst φ), or a
- cherty dolomite, or a
- cherty dolomitic limestone.

Photoelectric index helps to choose correct alternative.

In contrast, a dolomite reading on the photoelectric index curve alone could also be caused by a cherty or sandy limestone.

The simultaneous consideration of the neutron-density log overlay with the P_e log resolves what is more likely.

Gypsum, anhydrite, and rock salt (halite): highly distinctive logging properties (see Table below and Figure next slide). Halite and anhydrite have markedly low and high bulk densities, respectively, while the very high neutron porosity of gypsum is caused by hydrogen in its crystal water.

Lithology	P _e	Φ _N	φ _D (bulk density)
Gypsum	4.0	60	21 (2.35)
Anhydrite	5.1	-2	-16 (2.98)
Halite	4.7	-3	39 (2.04)

On the logs partly backup scale!

Multiple log overlay: evaporites

Coals: typically for deltaic environments with shales, siltstones, and sandstones, as well as occasional ironstones (typically siderite).

- Clay mineralogy is quite variable, often elevated contents in kaolinite, particularly in paleosols.
- Also glauconite may develop in the marine part, especially during transgressions.
- Logging properties of coals vary according to rank:

Lithology	P _e	Φ _N	ϕ_D (bulk density)
Lignite	0.20	52	89 (1.19)
Bituminous coal	0.17	60	86 (1.24)
Anthracite	0.16	38	72 (1.47)

On the logs partly backup scale!

Multiple log overlay: coal

Exercise 3-3

Succession is a mixture of sst., lst., dol., and chert.

Give reasons for lithology plotted.

Exercise 3-4a: Oz machine

Exercise 3-4b: Oz machine

Exercise 3-4c: Oz machine

Anyhydrite

} { }

Cherty dol

Chert

Coal

Exercise 3-4d: Oz machine

Exercise 5-6: Dual Laterolog + MSFL

Dual laterolog - R_{xo} tornado chart for correcting logged resistivities to R_{t} .

- Blue <u>dashed</u> lines, upper part of diagram: scale from 20 to 120 gives d_i (diameter of invasion) in inches; scale from 0.5 to 3.04 gives d_i in meters.
- Blue solid lines: R_t / R_{xo} ; scale values increase from bottom to top and range from 0.2 to 100.
- Red lines: R_t / R_{LLD} , ranging from 1.1 to 1.8.

Exercise 5-6: Dual Laterolog + MSFL

Procedure

To use the tornado chart different ratios have to be calculated first:

- 1. $R_{LLD} / R_{MSFL} \ (R_{MSFL} \cong R_{xo})$
- 2. R_{LLD} / R_{LLS}
- 3. Find R_{LLD} / R_{xo} (vertical axis).
- 4. Find R_{LLD} / R_{LLS} (horizontal axis). Rubbins
- 5. Read values needed for the following equations from the tornado chart: R_t/R_{LLD} and R_t/R_{xo}

$$R_{t \text{ corr.}} = \frac{R_t}{R_{LLD}} \times R_{LLD}$$
$$R_{xo \text{ corr.}} = \frac{R_t \text{ corr.}}{R_t / R_{xo}}$$

Class exercise: Dual Induction Log

ILD = R_{ILD} = 70 ohm-m; ILM = R_{ILM} = 105 ohm-m; SFLU = R_{SFL} = 320 ohm-m R_{SFL} / R_{ILD} = 4.6 R_{ILM} / R_{ILD} = 1.5

$$R_t$$
(corrected) = $\frac{R_t}{R_{ILD}} \times R_{ILD}$

equ. A

$$R_{xo}$$
(corrected) = $\frac{R_{xo}}{R_t} \times R_t$ (corrected)

